Imagine a helmet that can improve situational awareness for SWAT teams storming a building by displaying navigational maps and bird’s-eye views that warn them of movement outside. Or a military helmet with foam that can sense—and brace for—an explosion.To get more news about Hard Armor Plates, you can visit bulletproofboxs.com official website.

At the simplest level, the purpose of a helmet is to prevent catastrophic injury to a wearer’s brain. But research is paving the way for technology to not only drastically improve protection but enhance helmets in ways that could revolutionize warfare and policing.
image
Let’s take a look at some groundbreaking advances being made in helmet technology, including “smart” innovations that loom on the horizon.U.S. soldiers donned the first official helmets in the years leading up to World War I. Made of simple pressed steel, these early incarnations were prohibitively heavy. And while they offered some protection against flying debris, they did little to stop bullets. The heavy steel also made it impractical to cover a soldier’s ears.

A newer generation of combat headgear—the M1 helmet, not-so-affectionately nicknamed “the steel pot”—marginally improved head protection from World War II through the Vietnam War. Its manganese steel shell fared slightly better against flying shrapnel and extended farther down the sides and back of a soldier’s head. But it remained heavy and uncomfortable and certainly didn't provide much protection against bullets.

The equation finally changed with the advent of synthetic materials like Kevlar. In the 1980s, U.S. Army soldiers sported the first synthetic helmet: the Personnel Armor System for Ground Troops (PAGST). Both lightweight and strong, this headgear offered reliable protection against handgun bullets for the first time. It also provided real blunt impact protection by replacing webbing suspension systems with padding systems that sit between the helmet shell and the wearer’s head.

In the decades since, evolving research has continued to develop materials with the twin goals of increasing ballistic and blunt protections while reducing weight. Soldiers may wear helmets up to 18 hours a day in training and combat situations. Over time, heavy weight can cause a great deal of fatigue and stress on the body that impact overall effectiveness.

By the mid-2000s, the Advanced Combat Helmet (ACH) was the helmet of choice among U.S. ground forces—offering better bullet resistance than the PAGST at a lighter weight. The Army’s ACH Gen II contract fielded a new generation of helmets that utilize high-density polyethylene fibers to drop weight by an average of 24%.

The military took protection to the next level by issuing Enhanced Combat Helmets (ECH) to soldiers in high-threat situations like Iraq. The ECH is about the same weight as a standard ACH but offers better ballistic and blunt impact protection.